

Tim Raczek

Federal Automotive Statistical Tool Technical Team Idaho National Laboratory

FAST: Using Federal Fleet Data for Decision-Making

New Ways of Using Vehicle-Level Data

Tim Raczek · Ron Stewart

Idaho National Laboratory

We'll cover...

- A bit of background on federal vehicle fleet data
 - What we have and how we got here
- What can we do with this data?
 - A quick look at the federal vehicle fleet
- Fleet decision-making
 - Three examples of how the data can be used

Federal Fleet Data: The Early Years

- Earliest version of FAST
 - Based on GSA Standard Form 82
 - Location: foreign vs domestic
- FY 2003-2016 (ish)
 - Foreign vehicles
 - Domestic vehicles by state
- FY 2006-present
 - EPAct 2005 Section 701 waiver requests with lat+lon or street+city+state+ZIP

Federal Fleet Data: Per-Vehicle Information

- FY 2018 (and future)
 - All federal agencies submit per-vehicle data
- Every vehicle reported with...
 - Vehicle attributes
 - Ownership, acquisition, disposal data
 - Annual cost data and miles travelled
 - Fuel consumption data

Per-Vehicle Information: Location

All vehicles have location

- Foreign

Domestic: Withheld

- Domestic: Lat+Lon

- Domestic: ZIP

 We post-process dataset for consistent location information

 Opens up new ways of viewing and analyzing fleet data

FY 2018 Domestic Federal Fleet Vehicle Inventory

State	Inventory
California	64,930
Texas	43,605
Florida	29,423
Virginia	23,269
New York	22,464

FY 2018 Domestic Federal Fleet Alt. Fuel Vehicle (AFV) Inventory

State	AFV Inventory
California	19,691
Texas	17,794
Florida	10,363
Virginia	9,900
Washington	7,584

FY 2018 Domestic Federal Fleet % Alt. Fuel Vehicle (AFV) Inventory

State	% AFV Inventory
Hawaii	48.8 %
Missouri	47.8 %
South Carolina	47.3 %
Dist. of Columbia	47.1 %
Tennessee	46.7 %

FY 2018 Domestic Federal Fleet Fuel Consumption

State	Volume (GGE's)
California	35,383,438
Texas	29,766,679
Florida	17,673,025
New York	16,318,964
Arizona	13,035,237

FY 2018 Domestic Federal Fleet Alt. Fuel Consumption

State	Volume (GGE's)
California	1,082,672
Texas	736,376
Washington	672,536
South Carolina	612,465
Virginia	475,389

FY 2018 Domestic Federal Fleet % Alt. Fuel Consumption

State	% Alt Fuel	
North Dakota	12.7 %	
Hawaii	12.3 %	
South Carolina	12.2 %	
Iowa	9.7 %	
Idaho	9.3 %	

FY 2018 Federal Vehicle Alt Fuel Consumption Volume: South Carolina

AFV's: widely distributed

Alt fuel consumption: highly localized

FY 2018 Federal Fleet Invalid Fuel Volume

State	Volume (GGE's)
New York	1,099,600
California	1,088,800
Texas	1,001,238
Georgia	551,709
Virginia	425,472

FY 2018 Federal Fleet % Invalid Fuel Volume

State	% Invalid	
Dist. of Columbia	9.4 %	
New York	6.7 %	
Nevada	6.4 %	
Colorado	4.5 %	
Georgia	4.5 %	

FY 2018 Individual Agency Invalid Fuel Consumption by Vehicle

- Looking at an individual agency's vehicles shows two types of problems:
 - Specific locations with large volumes (e.g., Texas, Indiana, Utah)
 - Groups of vehicles with high percentages (e.g., Alabama)
- This type of view helps agency better understand how to approach problem

FY 2018 Individual Agency Invalid Fuel Consumption by Vehicle: Alabama

 Uniformly poor across state: any vehicle with invalid fuel consumption has all (or nearly all) invalid consumption

These types of views are easily customized to help explore:

- Filter by ownership
- Filter by fuel type or vehicle fuel type
- ... or any other attribute of relevance

- Hypothetical Question: Are there locations where agencies could share vehicles?
 - ... and if so, where? What types? How many? Who?
- Per-vehicle fleet data make answering questions like this feasible
- Answer: Maybe, let's look...

- Criteria for identifying potential locations for sharing:
 - Co-location: vehicles based in same ZIP code
 - Low utilization: vehicles with < 3,000 annual miles
 - Similar vehicles: same vehicle type (e.g., LD Minivan 4x2 Passenger)
 - Grouping: 10 or more vehicles from 3 or more agencies
 - Other considerations:
 - Only look at light-duty vehicle types for initial analysis
 - Only look at vehicles already in a "pool" situation (not assigned to individuals)
 - Exclude vehicles likely to be mission-specific (LE, ER, armored)
 - Exclude USPS and DOD

- Answer: 39 potential locations and vehicle types
 - If we look for locations with 2 or more agencies, it expands to 86 location+types
- Of particular interest: locations with multiple vehicle types all meeting these criteria
 - Likely more feasible based on scale and flexibility

- Potential locations might depend on priorities:
 - Broader group of vehicle types
 - Larger groups of agencies and/or vehicles

Location	Vehicle Types	# Agencies	# Vehicles
Washington, DC 20024	LD Minivan 4x2 (Passenger)	5	14
	LD SUV 4x2	4	10
	LD SUV 4x4	7	17
	Sedan/St Wgn Subcompact	3	16
Washington, DC 20001	LD Minivan 4x2 (Passenger) LD SUV 4x4 Sedan/St Wgn Compact	<mark>9</mark> 4 5	19 15 <mark>30</mark>
Los Alamos, NM 87544	LD SUV 4x4	3	<mark>118</mark>

- Hypothetical fleet analysis: Pilot project to replace USPS LLV fleet
 - 160K+ vehicles of same type and age
 - Expensive to operate and maintain
 - Can we find locations with large groups of the more expensive vehicles in this set that would serve as pilot locations for a wholesale replacement?
 - Locations with groups of vehicles may have advantages based on infrastructure or personnel

Vehicle Location and Operating Cost

- Top quartile of fleet segment: annual operating cost > \$8,750
- Where are they?
 - Dot size: larger = more vehicles
 - Color: Red = higher cost
- Map shows these vehicles are widely distributed
 - ... we need a more refined view

Vehicle Location and Operating Cost

- Top quartile of fleet segment: annual operating cost > \$8,750
- Locations with 20+ vehicles
- Where are they?
 - Dot size: larger = more vehicles
 - Color: Red = higher cost
- Several potential locations
 - Southern California
 - Atlanta, GA area
 - NW Washington
 - Chicago/Wisconsin/Michigan areas
 - Several New England areas

Vehicle Location and Operating Cost

- Cluster of vehicle locations around Atlanta, GA
 - Covington, GA: 57 vehicles @ \$16,036
 - 7 add'l locations with 40+ high cost vehicles each
 - More than 1,400 high cost vehicles in this area, all in locations with 20+ high cost vehicles

Combination of detailed vehicle data

- + vehicle location data
- + a different way of visualizing data

... combine to support a type of analysis that was not feasible before.

\$ 16,783

Discussion

Questions? Ideas? Let's talk!

FAST Program Contact Information

- DOE Federal Energy Management Program
 - Brad Gustafson brad.gustafson@ee.doe.gov
- GSA Office of Government-wide Policy
 - James Vogelsinger james.vogelsinger@gsa.gov
 - Patrick McConnell patrick.mcconnell@gsa.gov

- EIA Office of Energy Consumption and Efficiency Statistics
 - Cynthia Sirk cynthia.sirk@eia.gov
- Idaho National Laboratory
 - Michelle Kirby michelle.Kirby@inl.gov
 - Tim Raczek timothy.raczek@inl.gov
 - Ron Stewart ron.stewart@inl.gov
 - Twitter: @fastdevs

